Prishita Kapoor
Aug 13, 2021

Circle Detection with Hough Cirlces

cv2.HoughCircles(image, method, dp, MinDist, param1, param2, minRadius, MaxRadius)

  • Method — currently only cv2.HOUGH_GRADIENT available
  • dp — Inverse ratio of accumulator resolution
  • MinDist — the minimum distance between the center of detected circles
  • param1 — Gradient value used in the edge detection
  • param2 — Accumulator threshold for the HOUGH_GRADIENT method, lower allows more circles to be detected (false positives)
  • minRadius — limits the smallest circle to this size (via radius)
  • MaxRadius — similarly sets the limit for the largest circles
import cv2
import numpy as np
import cv2.cv as cv
image = cv2.imread('images/bottlecaps.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 5)
circles = cv2.HoughCircles(blur, cv.CV_HOUGH_GRADIENT, 1.5, 10)
for i in circles[0,:]:
# draw the outer circle
cv2.circle(image,(i[0], i[1]), i[2], (255, 0, 0), 2)

# draw the center of the circle
cv2.circle(image, (i[0], i[1]), 2, (0, 255, 0), 5)
cv2.imshow('detected circles', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Prishita Kapoor
Prishita Kapoor

Written by Prishita Kapoor

I endeavor to fuse academic knowledge with experience for the growth of the world while enhancing my engineering and interpersonal skills.

No responses yet